1,155 research outputs found

    Assessment of the notions of band offsets, wells and barriers at nanoscale semiconductor heterojunctions

    Full text link
    Epitaxially-grown semiconductor heterostructures give the possibility to tailor the potential landscape for the carriers in a very controlled way. In planar lattice-matched heterostructures, the potential has indeed a very simple and easily predictable behavior: it is constant everywhere except at the interfaces where there is a step (discontinuity) which only depends on the composition of the semiconductors in contact. In this paper, we show that this universally accepted picture can be invalid in nanoscale heterostructures (e.g., quantum dots, rods, nanowires) which can be presently fabricated in a large variety of forms. Self-consistent tight-binding calculations applied to systems containing up to 75 000 atoms indeed demonstrate that the potential may have a more complex behavior in axial hetero-nanostructures: The band edges can show significant variations far from the interfaces if the nanostructures are not capped with a homogeneous shell. These results suggest new strategies to engineer the electronic properties of nanoscale objects, e.g. for sensors and photovoltaics.Comment: Accepted for publication in Phys. Rev.

    Optical phonon scattering and theory of magneto-polarons in a quantum cascade laser in a strong magnetic field

    Full text link
    We report a theoretical study of the carrier relaxation in a quantum cascade laser (QCL) subjected to a strong magnetic field. Both the alloy (GaInAs) disorder effects and the Frohlich interaction are taken into account when the electron energy differences are tuned to the longitudinal optical (LO) phonon energy. In the weak electron-phonon coupling regime, a Fermi's golden rule computation of LO phonon scattering rates shows a very fast non-radiative relaxation channel for the alloy broadened Landau levels (LL's). In the strong electron-phonon coupling regime, we use a magneto-polaron formalism and compute the electron survival probabilities in the upper LL's with including increasing numbers of LO phonon modes for a large number of alloy disorder configurations. Our results predict a nonexponential decay of the upper level population once electrons are injected in this state.Comment: 10 pages, 23 figure

    Direct and indirect exciton mixing in a slightly asymmetric double quantum well

    Full text link
    We studied, theoretically, the optical absorption spectra for a slightly asymmetric double quantum well (DQW), in the presence of electric and magnetic fields. Recent experimental results for a 10.18/3.82/9.61 nm GaAs Al(_{.33} )Ga(_{.67})As DQW show clearly the different behavior in the luminescence peaks for the indirect exciton (IX) and left direct exciton (DX) as a function of the external electric field. We show that the presence of a peak near the (DX) peak, attributed to an impurity bound left (DX) in the experimental results, could be a consequence of the non-trivial mixing between excitonic states.Comment: 8 pages and 8 figure

    Optical Manipulation of Single Electron Spin in Doped and Undoped Quantum Dots

    Full text link
    The optical manipulation of electron spins is of great benefit to solid-state quantum information processing. In this letter, we provide a comparative study on the ultrafast optical manipulation of single electron spin in the doped and undoped quantum dots. The study indicates that the experimental breakthrough can be preliminarily made in the undoped quantum dots, because of the relatively less demand.Comment: 3 pages, 3 figure

    Broadening effects due to alloy scattering in Quantum Cascade Lasers

    Full text link
    We report on calculations of broadening effects in QCL due to alloy scattering. The output of numerical calculations of alloy broadened Landau levels compare favorably with calculations performed at the self-consistent Born approximation. Results for Landau level width and optical absorption are presented. A disorder activated forbidden transition becomes significant in the vicinity of crossings of Landau levels which belong to different subbands. A study of the time dependent survival probability in the lowest Landau level of the excited subband is performed. It is shown that at resonance the population relaxation occurs in a subpicosecond scale.Comment: 7 pages, 8 figure

    Self-Consistent Electron Subbands of Gaas/Algaas Heterostructure in Magnetic Fields Parallel to the Interface

    Full text link
    The effect of strong magnetic fields parallel to GaAs/AlGaAs interface on the subband structure of a 2D electron layer is ivestigated theoretically. The system with two levels occupied in zero magnetic field is considered and the magnetic field induced depletion of the second subband is studied. The confining potential and the electron dispersion relations are calculated self-consistently, the electron- electron interaction is taken into account in the Hartree approximation.Comment: written in LaTeX, 8 pages, 4 figs. available on request from [email protected]

    Photo-induced spin filtering in a double quantum dot

    Full text link
    We investigate the spin-resolved electron dynamics in a double quantum dot driven by ultrafast asymmetric electromagnetic pulses. Using a analytical model we show that applying an appropriate pulse sequence allows to control coherently the spin degree of freedom on the femtosecond time scale. It can be achieved that the spin-up state is localized in a selected quantum dot while the spin-down state remains in the other dot. We show that this photo-induced spin-dependent separation can be maintained for a desired period of time.Comment: shortened, revised version 2 article published at Appl. Phys. Let

    Nonlinear optical response in gapped graphene

    Full text link
    We present a formulation for the nonlinear optical response in gapped graphene, where the low-energy single-particle spectrum is modeled by massive Dirac theory. As a representative example of the formulation presented here, we obtain closed form formula for the third harmonic generation (THG) in gapped graphene. It turns out that the covariant form of the low-energy theory gives rise to a peculiar logarithmic singularities in the nonlinear optical spectra. The universal functional dependence of the response function on dimension-less quantities indicates that the optical nonlinearity can be largely enhanced by tuning the gap to smaller values.Comment: http://iopscience.iop.org/0953-8984/labtalk-article/4938

    Choosing a basis that eliminates spurious solutions in k.p theory

    Full text link
    A small change of basis in k.p theory yields a Kane-like Hamiltonian for the conduction and valence bands of narrow-gap semiconductors that has no spurious solutions, yet provides an accurate fit to all effective masses. The theory is shown to work in superlattices by direct comparison with first-principles density-functional calculations of the valence subband structure. A reinterpretation of the standard data-fitting procedures used in k.p theory is also proposed.Comment: 15 pages, 2 figures; v3: expanded with much new materia

    Confinement-induced Berry phase and helicity-dependent photocurrents

    Full text link
    The photocurrent in an optically active metal is known to contain a component that switches sign with the helicity of the incident radiation. At low frequencies, this current depends on the orbital Berry phase of the Bloch electrons via the "anomalous velocity" of Karplus and Luttinger. We consider quantum wells in which the parent material, such as GaAs, is not optically active and the relevant Berry phase only arises as a result of quantum confinement. Using an envelope approximation that is supported by numerical tight-binding results, it is shown that the Berry phase contribution is determined for realistic wells by a cubic Berry phase intrinsic to the bulk material, the well width, and the well direction. These results for the magnitude of the Berry-phase effect suggest that it may already have been observed in quantum well experiments.Comment: 4 pages, 2 figure
    corecore